Project HENRI







[RECOVERY AND RESILIENCE]



- First Slovak Hydrogen IPCEI project— Hy2Tech wave
- HENRI HYDROGEN ENERGY RESERVOIR
- HENRY CAVENDISH



- An English natural philosopher, chemists and scientists
- Noted for discovery of Hydrogen
- (1731-1810)





















#### 29 conditions are identified within 3 categories

Three weighting factors: **key**, **major** and **minor** Each criterion is assessed individually (0-1, 0-2, or 0-3 points)

12 key criteria parameters that must be met for a structure to qualify for hydrogen storage. Failure to meet these criteria disqualifies the structure or indicates insufficient data.

13 major and 4 minor criteria parameters are essential for a comprehensive evaluation of the structure, detailing its characteristics and exploration stage.

The minimum gain required for the salt bed to be considered potentially suitable for the construction a cavern and UHS: 80.6 %







### Geological map of Slovakia showing the sedimentary basins and structures analyzed in this study (modified from Hók et al., 2014).



Methods: The presented newly developed methodology was introduced

Data: NAFTA a.s. company archive, Geofond - state geological archive, and sci. publications



The **salt formations** within the **East Slovakian**Basin are evaluated for UHS.







#### **Geochemical Testing**

#### Investigations:

- Permeability measurements (water and gas)
- Petrographical characterization (Thin section analysis)
- Storage experiments in specific pressure vessel
- Total for 12 months (Sampling after 6 and 12 months)









#### **Geochemical Testing**

#### Investigations:

- Permeability measurements (water and gas)
- Petrographical characterization (Thin section analysis)
- Storage experiments in specific pressure vessel
- Total for 12 months (Sampling after 6 and 12 months)

| Reservoir | Pressure<br>[bar] | Temperature<br>[°C] | Salinity [mg/1] |
|-----------|-------------------|---------------------|-----------------|
| 1         | 80                | 40                  | 19 000          |
| 2         | 160               | 90                  | 16 000          |
| 3         | 200               | 60                  | 24 000          |

#### **Results:**

First results after 6 monts storage 9/2024







# Cap Rock Testing Mineralogy Fementvertellungs Summerspettrum Si Joseph Cap Si Josep



 Elementverteilungs-Summenspektrum

 Oxid %
 σ

 Si
 58.0
 0.3

 Al
 16.2
 0.2

 Ca
 8.1
 0.1

 Fe
 5.0
 0.1

 S
 3.8
 0.1

 K
 3.3
 0.1

 Mg
 2.9
 0.1

 Na
 1.4
 0.1

 Ti
 1.2
 0.1

 Unterstützt durch Tru-Q®

The elements C, Ca, Ti, Na, Mg, Al, Si, K and Fe were determined in all areas analysed. The most common element is Si with 55-60% (expressed as element oxide), followed by Al (approx. 12-19%) and Ca (approx. 8-11%). Titanium only occurs in proportions <1%.







#### **Cap Rock Testing**

#### Capillary threshold pressure

#### Capillary threshold pressure

- Hydrogen (100%)

- Methane (100%)

Methane + Hydrogen (2%) >11 - <12</li>

- Methane + Hydrogen (20%) >10 - <11

- Methane + Hydrogen (50%) >10 - <1/

- Hydrogen (100%) > 9 - <10



Figure 3: Procedure for the static threshold pressure measurement.









#### **Cap Rock Testing**

#### Brine permeability

- Hydrogen (100%)

1.66 E-21 m<sup>2</sup>

- Methane (100%)

1.44 E-21 m<sup>2</sup>

- Methane + Hydrogen (2%) 1.24 E-21 m<sup>2</sup>

- Methane + Hydrogen (20%)

1.31'E-21 m<sup>2</sup>

- Methane + Hydrogen (50%)

1.26 E-21 m<sup>2</sup>

- Hydrogen (100%)

1.27 E-21 m<sup>2</sup>

Final measurement

1.30 E-21 m<sup>2</sup>



the specimen is reached
 If equilibration is reached, the injection rate equals the output flow rate and all parameters are constant over time.

 A characteristic property of caprock samples is the very low permeability (~ 10<sup>-20</sup> to 10<sup>-22</sup> m²)

From the fluid flow, the permeability can be calculated by applying Darcy's law for flow in porous media (Darcy 1856).







#### Microbiology

- Living microorganisms have been found in various underground structures in previous studies
- Hydrogen is a very good energy source for many anaerobic processes









#### Identification of physiological microorganism groups with selective cultivation methods



Original reservoir sample



Different cultivation methods



Evaluation of cell growth and activity



















#### Identification of microbial population with molecular biological methods



Original reservoir sample



Filtration, DNA extraction



qPCR, Microbiome-Analysis















#### Microbiome Analysis - Reservoir 1



## Archaea 1,08% Methanocalculaceae Methanomicrobiaceae Methanotrichaceae Mothanotrichaceae Mothanotrichaceae Mothanotrichaceae Mothanotrichaceae

98,90%

#### Archaea:

- Hydrogenotrophic methanogens
- Families: Methanocalculaceae and Methanomicrobiaceae

#### Bacteria:

- Family: Pseudomonadaceae
- Widespread environmental bacteria
- Denitrification
- acetate production with H2
- biofilm formation
- \* Families: Clostridiaceae and Shewanellaceae
- some are SRB



82,26%\_







#### Hydrogen stimulation tests at ambient pressure and high pressure



#### Ambient pressure tests

Hydrogen- 0; 5; 15; 50; 100% pressure 2 bar



#### Formation water

Core

cultures from reservoir 1

Different hydrogen concentrations

Measurement of gas consumption and gas composition during test period

#### High pressure tests

| Hydrogen-<br>concentration | 15% and 100%  |
|----------------------------|---------------|
| pressure                   | 40 and 80 bar |

















#### Material testing

- Tests are ongoing
- Partners: TUKE, MontanUniversität Leoben, Institute de la Corrosion
- Results in 2025







#### Next step of the project

- Completion of laboratory experiments and interpretation of measured data
- 2) Processing of a complex model of the reservoir
- 3) Preparation of engineering study and documentation for Second phase of the project
- 4) Preparation of the study for Hydrogen purification
- 5) Completion of the project first phase











Preliminary results from the Cap rock testing are very optimistic, other tests are still ongoing.





